of $0.05 \times 0.05 \mathrm{~mm}$. The (0 kl) reflexions were recorded as the equatorial layer line of a moving-film photograph. The strong and weak reflexions were correlated by the multiple-film technique, and were estimated visually. Structure amplitudes, derived by the usual formulae for a mosaic crystal, are listed in Table 2.

In the Fourier synthesis the axial subdivisions were $\frac{1}{60} b=0.242 \mathrm{~A}$. and $\frac{1}{60} c=0 \cdot 270 \mathrm{~A}$. The co-ordinates estimated for all the atoms were used in a recalculation of the structure factors, and the results are given in Table 2. The average discrepancy, referred to the measured structure factors, is 14%. A systematic survey for all the reflexions possible with copper radiation was made, but to save space in the table only the structure factors actually measured are listed. These amount to only about 40% of the possible number, owing to the small size of the crystal.

In the calculation of the structure factors the atomic scattering curves given in the International Tables for the Determination of Crystal Structures were employed,
and were corrected for temperature according to the Debye-Waller formula, the constant B being given the value $2 \times 10^{-16} \mathrm{~A} .{ }^{2}$ The absolute scale was obtained by correlation with these calculated values.

In conclusion, one of us (W.P.B.) wishes to express his thanks to Messrs Imperial Chemical Industries Ltd., for a grant which enabled him to take part in this work.

References

Bunn, C. W. \& Garner, E. V. (1947). Proc. Roy. Soc. A, 189, 39.
Harker, D. (1936). J. Chem. Phys. 4, 381.
MacGillavry, C. H. (1941). Rec. Trav. Chim. Pays-Bas, 60, 605.
Morrison, J. D. \& Robertson, J. M. (1949). J. Chem. Soc.
Müller, A. (1928). Proc. Roy. Soc. A, 120, 437.
Pauling, L. (1939). The Nature of the Chemical Bond. Cornell: University Press.
Robertson, J. M. (1943). Nature, Lond., 152, 411.

The Crystal Structure of Diethyl Terephthalate

By Myra Batiey
Research Laboratories, Imperial Cheriical Industries Ltd., Hexagon House, Blackley, Manchester 9, England

(Received 6 December 1948)

Abstract

The crystal structure of diethyl terephthalate has been determined. The crystals are monoclinic, with cell dimensions $a=9.12 \mathrm{~A} ., b=15 \cdot 39 \mathrm{~A}$., $c=4 \cdot 21 \mathrm{~A}$., $\beta=93 \cdot 4^{\circ}$. The space group is $P 2_{1} / n$ with two centrosymmetrical molecules in the unit cell. The atomic co-ordinates were obtained from packing considerations and were refined by c-axis Fourier projections and line syntheses. The molecule is planar, with the exception of the terminal CH_{3} groups, and the only intermolecular forces are of the van der Waals type, the shortest distance between adjacent molecules being 3.4 A .

Introduction

The structure of diethyl terephthalate is of particular interest since no previous detailed X-ray work on aromatic esters has been reported. It was hoped to obtain information concerning the molecular configuration, including the planarity of the molecule, interatomic distances and interbond angles, and also concerning the nature of the intermolecular contacts and binding forces in this type of compound.

Unit-cell and space-group measurements were made on some related esters (Table 1), and diethyl terephthalate was selected as the most suitable for a complete structure determination.

Experimental

Diethyl terephthalate crystallizes from most organic solvents in the form of c-axis needles with predominant $\{110\}$ faces, terminated by the two $\{101\}$ dome faces. There is also a good (101) cleavage. Pseudo-orthorhombic contact twins occur frequently by 180° rotation about the c axis, but these could be identified by their anomalous extinction effects between crossed nicols.

The unit-cell dimensions were obtained with an accuracy of $\pm 0.015 \mathrm{~A}$. from symmetrical oscillation photographs taken on a camera with calibrated knifeedges. Measurements were made from zero-layer-line reflexions for which θ approached 90°, and $\mathrm{Cu} K \alpha_{1}$ and

Table 1

Compound	Formula	Space group	$\begin{gathered} a \\ \text { (A.) } \end{gathered}$	$\begin{gathered} b \\ \text { (A.) } \end{gathered}$	$\stackrel{c}{c}$	$\begin{array}{r} \beta \\ \left({ }^{\circ}\right) \end{array}$	No. of molecules
Diethyl terephthalate	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COO} . \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$P 2_{1} / n$	$9 \cdot 12$	15.39	$4 \cdot 21$	$93 \cdot 4$	2
Dimethyl terephthalate	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COO} . \mathrm{CH}_{3}\right)_{2}$	Pbca	22	$7 \cdot 1$	$5 \cdot 7$	-	4
Diethylol terephthalate	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COO} . \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}\right)_{2}$	${ }_{P 2} /{ }^{1} \times$	25.9	5.48	$8 \cdot 58$	99	4
Ethylene dibenzoate	$\mathrm{C}_{2} \mathrm{H}_{4}\left(\mathrm{OOC.C} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$	Pbca	21.9	$16 \cdot 36$	$7 \cdot 60$	-	8

$\mathrm{Cu} K \alpha_{2}$ were resolved. The density determined at $18^{\circ} \mathrm{C}$. by flotation in sodium iodide solution was $1.243 \mathrm{~g} . \mathrm{cm} .^{-3}$, indicating two molecules of $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COO} . \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ in the unit cell. (The theoretical density $=1.248 \mathrm{~g} . \mathrm{cm}^{-3}{ }^{-3}$.)

Intensity data using $\mathrm{Cu} K \alpha$ radiation were recorded on Weissenberg photographs for the zero to third a-axis layers, zero to fifth b-axis layers, and zero and first c-axis layers, and were estimated visually by the multiple-film technique (Robertson, 1943) with slight modification. Several very strong reflexions were reestimated more accurately from 5° oscillation photographs, on which they were compared with reflexions of reliable intensity and appropriately longer exposure. The experimental structure amplitudes of 665 planes were obtained after application of the necessary correction factors to the observed intensities. Few reflexions were recorded with $\sin \theta>0 \cdot 8$, and the series terminated naturally.

Preliminary structure

In the space group $P 2_{1} / n$ there are four general positions: $x, y, z ; \bar{x}, \bar{y}, \bar{z} ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$. Since the structure has only two $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COO} . \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ molecules in the unit cell, these must have the centrosymmetrical trans-configuration, and the centres were taken at $0,0,0$ and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. There were then twenty-four unrelated atomic parameters to be determined.

Considering the short c-axis length of $4 \cdot 21 \mathrm{~A}$., it seemed unlikely that the plane of the molecule would be much inclined to (001), and if the approximate orientation of the molecules was determined, the x and y coordinates could be readily refined by Fourier projections parallel to this axis.

In the preliminary calculations the molecule was assumed planar with bond lengths

$$
\begin{array}{ll}
& \mathrm{C}-\mathrm{C} \text { (aromatic) }=1.40 \mathrm{~A} ., \\
& \mathrm{C}(\text { aromatic })-\mathrm{C} \text { (aliphatic) }=1.50 \mathrm{~A} ., \\
& \mathrm{CH}_{2}-\mathrm{CH}_{3}=1.55 \mathrm{~A} ., \\
\text { and } \quad & \mathrm{C}=\mathrm{O}=1.25 \mathrm{~A} ., \\
\mathrm{C}-\mathrm{O}=1.45 \mathrm{~A} .,
\end{array}
$$

and with the normal interbond angles.
From a wire model constructed to allow free rotation of the skeleton molecules about their centres it was found that only two orientations were possible from packing considerations, and this was so for any moderate variation from the assumed configuration. In one of these the length of the molecule was in the direction of the b axis, in the other it was approximately parallel to [$21 \overline{2}$]. The latter arrangement allowed more satisfactory clearance between adjacent molecules, and was favoured by a preliminary optical examination of the crystals, which showed the direction of highest refractive index γ to be nearly parallel to the $[10 \overline{1}]$ axis. Series of ($h k 0$) structure amplitudes were calculated for systematic variations about these two positions, and comparison with the observed values showed that the orientation with the length of the molecule in the [21 $\overline{2}$] direction was fundamentally correct.

After further adjustment the signs of about $50(h k 0)$ reflexions were determined, and refinement of the x and y co-ordinates was continued by successive Fourier approximations.

Fourier refinement

The structure was very suitable for projection on (001). There was no overlap of molecules on this plane, and an initial Fourier synthesis of forty-four terms showed resolution of all the atoms. The refinement was complete after the fourth synthesis, which included 108 of the $110(h k 0)$ reflexions observed. The signs of the two remaining terms were unreliable, but their amplitudes were small. The x and y co-ordinates were measured from the peaks in the final electron-density projection map, which is shown in Fig. l.

Fig. 1. Electron-density map projected on (001). Contours at intervals of 1 electron per A. ${ }^{2}$, the unit contour being dotted.

It remained to determine the z co-ordinates. The three strongest reflexions observed were (101), (031) and (021); and these gave an indication of the tilt of the molecule from the (001) plane. The z co-ordinates were calculated for the molecule in each plane, and experimental and calculated structure amplitudes compared for intermediate values. In this way moderate agreement was obtained for $F(h k l)$'s.

Consideration of the structure indicated that projections parallel to the a or b axis would show very little resolution of the atoms, and would be of no use in refining the z co-ordinates. At this stage the signs of thirty-six large ($h k l$) terms could be fixed, and from these a three-dimensional Fourier synthesis was computed along lines parallel to the c axis through each of the peaks in the (001) projection. Structure amplitudes
were recalculated using the revised z co-ordinates, and showed a marked improvement in agreement. The synthesis was repeated to include more terms, and continued to refine rapidly. The final z co-ordinates were measured from the fourth-line syntheses which included 649 terms, the remaining sixteen being of uncertain sign but too small to have an appreciable effect.

The interatomic distances were calculated, and were in reasonable agreement with the generally accepted values with the exception of the $\mathrm{C}_{4}-\mathrm{O}_{1}$ and $\mathrm{C}_{5}-\mathrm{O}_{1}$ distances, which were respectively shorter and longer

-Fig. 2. Part of the section of the three-dimensional Fourier synthesis at $z=0.675$, showing C_{4} and O_{1}.
than comparable $\mathrm{C}-\mathrm{O}$ distances found in similar types of compound. To check the position of O_{1}, a section of the three-dimensional Fourier synthesis was plotted at $z=0.675$ to include the C_{4} and O_{1} atoms (Fig. 2). The fractional x co-ordinate of O_{1} in the section differed from that in projection by 0.006 (the mean value was finally taken); the remaining x and y co-ordinates were consistent with the projection to within 0.002 .

To bring the $\mathrm{C}_{4}-\mathrm{O}_{1}$ and $\mathrm{C}_{5}-\mathrm{O}_{1}$ to equal distances of about 1.45 A . a change in the x co-ordinate of O_{1} of the order of 0.015 is required. The agreement between the parameters from the projection and from the threedimensional section suggests that the O_{1} position is not in error by this amount. Moreover, the final Fourier syntheses have been computed for almost completely terminated series, which should eliminate possible displacement of the peaks on this account. Neither should any considerable error have been introduced in the measurement of the x and y co-ordinates from the peaks in the (001) projection, since each atom was clearly resolved and had moderately regular electron-density contours from which the centre could be estimated. Many of the experimental structure ampitudes have been estimated from a-, b - and c-axis photographs, and comparison of the three independent observations indicated an agreement to within about 15% for amplitudes greater than 5 , and a decrease to within about 40% for an amplitude of 2 , which was the smallest recorded. That the accuracy of the parameters was limited by the accuracy of the observed structure amplitudes was
illustrated by the fact that when the ($h k 0$) reflexions were recalculated with the x co-ordinate of $\mathrm{O}_{1}=0.330$ (corresponding to $\mathrm{C}_{4}-\mathrm{O}_{1}$ and $\mathrm{C}_{5}-\mathrm{O}_{1} \approx 1.45 \mathrm{~A}$.) instead of the value 0.315 obtained from Fourier refinement, the agreement with the observed $F(h k 0)$'s was not very appreciably impaired. However, the uncertainty in the scattering factors to be used must also be borne in mind when the accuracy is estimated from structure-amplitude agreement (see next section).

The atomic co-ordinates finally adopted from measurement of the peaks in the Fourier syntheses are recorded in Table 2.

Table 2. Fractional atomic co-ordinates

		y	z
Atom	x	y	0.990
C_{1}	0.153	-0.008	0.849
C_{2}	-0.070	0.067	0.841
C_{3}	0.083	0.062	0.678
C_{4}	0.172	0.125	0.51
C_{5}	0.408	0.175	0.517
C_{6}	0.562	0.133	0.
O_{1}	0.315	0.110	0.672
O_{2}	0.112	0.192	0.539

Structure-amplitude agreement

The observed and calculated structure amplitudes are listed in Tables 3 and 4 for the zero and first and second c-axis layers, the relative observed values having been adjusted to the absolute scale by applying the factor $\Sigma\left|F_{\text {calc. }}\right| \div \Sigma\left|F_{\text {obs. }}\right|$. In the preliminary structureamplitude calculations the Hartree scattering factor for carbon modified by a temperature factor

$$
\exp \left[-B\{(\sin \theta) / \lambda\}^{2}\right]
$$

where $B=5 \times 10^{-16} \mathrm{~A} .^{2}$, was found to be satisfactory. The large temperature factor required was to be expected from the low melting-point of $44^{\circ} \mathrm{C}$. and the weak intermolecular forces in the crystal. When the atomic co-ordinates had been determined more accurately, a more appropriate experimental scattering curve was used in the structure-amplitude calculations:

$\sin \theta(\lambda=1.542$ A. $)$	0	0.1	0.2	0.3	0.4
f_{c}	6.0	5.7	4.8	3.5	2.2
$\sin \theta(\lambda=1.542$ A. $)$	0.5	0.6	0.7	0.8	0.9
f_{c}	1.5	1.0	0.6	0.4	0.3

The oxygen contribution was approximated to fourthirds the carbon contribution, and the hydrogen contribution was neglected. The simplest way to allow for the hydrogen atoms would be to take the scattering factors as 7,8 and 9 , for $\mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3} respectively. This was tested for the ($h k 0$) reflexions, and the results are given in column (ii) of Table 3. Comparison with the figures in column (i) (hydrogen atoms omitted) shows a change in sign of only three small terms included in the final (001) projection, and since no improvement in the agreement between calculated and observed structure amplitudes was effected, the $F(h k l)$'s were computed omitting the hydrogen contributions. In the c-axis line syntheses the areas under the $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} peaks were approximately equal, the area under C_{5} was some-

Table 3. Comparison of observed and calculated $F(h k 0)$'s
(i) Hydrogen contributions omitted.

Plane	$F_{\text {obs }}$.	$F_{\text {calc. }}$ (i)	$F_{\text {calc. }}$ (ii)	Plane	$F_{\text {obs }}$.
000		208	236	2.13.0	12
020	19	22	22	2.14,0	5
040	53	-47	-57	2.15.0	<2
060	13	11	17	2,16,0	<2
080	4	-3	-1		
0.10,0	11	8	7	310	16
0.120	3	-3	- 3	320	2
0.14,0	3	1	2	330	2
0.16.0	10	9	11	340	29
				350	19
110	31	33	38	360	26
120	56	-58	-56	370	15
130	36	35	51	380	7
140	23	18	21	390	5
150	12	15	16	3.10,0	14
160	13	10	8	3.11,0	2
170	25	-25	-31	3.12.0	<2
180	12	9	9	3.13.0	<2
190	9	-6	-6	3.14,0	<2
1,10.0	<2	1	3	3.15,0	6
1.11 .0	4	2	3	3.16.0	<2
1.12.0	7	-6	-7		
1,13.0	<2	2	3	400	40
1,14,0	9	6	6	410	13
1.15,0	<2	7	7	420	8
1.16.0	4	4	4	430	14
				440	6
200	16	15	26	450	<2
210	16	-16	-14	460	18
220	6	-5	-7	470	5
230	11	9	7	480	12
240	2	2	-4	490	<2
250	11	9	12	4.10.0	5
260	3	1	2	4.11.0	8
270	9	-3	1		
280	23	-18	-18	510	20
290	4	-2	-5	520	22
2,10.0	14	-9	-10	530	<2
2.11.0	<2	-2	-3	540	5
2,12,0	5	1	0		

what lower, and that under the C_{6} peak was very appreciably lower. Thus it was evident that the thermal vibrations of the different carbon atoms were not of equal magnitudes, and particularly in the case of C_{5} and C_{6} they were very asymmetric. It was not possible to estimate these differences quantitatively for each atom, since all the atoms contribute to the majority of the reflexions. For the same reason no separate temperature factor could be estimated for the oxygen atoms.

The factor $\Sigma\left(\left|F_{\text {obs. }}\right|-\left|F_{\text {calc. }}\right|\right) \div \Sigma\left|F_{\text {obs. }}\right|$ has a value 0.22 for the ($h k 0$) reflexions, and 0.28 for the complete list of $665(h k l)$ reflexions.

Description of the structure

The molecule is planar within the limits of experimental error with the exception of the terminal $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ bond, which is inclined at 9° to this plane. The perpendicular distances of the atoms from the average plane of the benzene ring are $\mathrm{C}_{1} 0.01 \mathrm{~A} ., \mathrm{C}_{2} 0.02 \mathrm{~A} ., \mathrm{C}_{3} 0.00 \mathrm{~A}$., $\mathrm{C}_{4} 0.01 \mathrm{~A} ., \quad \mathrm{C}_{5} 0.04 \mathrm{~A} ., \quad \mathrm{C}_{6} 0.28 \mathrm{~A} . ; \quad \mathrm{O}_{1} 0.07 \mathrm{~A}$. and $\mathrm{O}_{2} 0.03 \mathrm{~A}$.

The bond lengths and interbond angles are shown in Fig. 3. They are probably reliable only to within $\pm 0.05 \mathrm{~A}$. and $\pm 5^{\circ}$ respectively, although the $\mathrm{C}-\mathrm{C}$
(ii) Hydrogen included in the carbon contributions.

$F_{\text {calc. }}$ (i)	$F_{\text {calc. }}$ (ii)	Plane	$F_{\text {obs }}$	$F_{\text {calc. }}$ (i)	$F_{\text {calc. }}$ (ii)
9	11	550	12	9	10
3	3	560	14	-6	- 8
2	2	570	16	9	11
1	2	580	7	-4	-4
		590	<2	-3	- 3
- 14	-18	5.10.0	<2	3	4
-1	4	5.11.0	<2	0	1
0	0				
29	30	600	8	-6	-10
-22	-22	610	7	4	2
-24	-28	620	4	4	5
-13	-22	630	5	0	-1
-3	-3	640	3	0	2
-3	-5	650	<2	3	5
11	14	660	2	1	0
1	1	670	6	1	1
-4	-6	680	20	15	16
-1	-1	690	10	-7	- 8
1	0	6.10.0	8	6	7
-5	-6	6.11 .0	<2	-3	-4
		710	5	2	4
-45	-50	720	<2	0	2
-7	-8	730	5	-5	-7
1	0	740	9	- 6	-7
-10	-12	750	<2	5	5
- 2	-2	760	11	10	9
-1	2	770	12	10	11
-11	-13	780	<2	3	3
6	9	790	<2	4	5
6	6	7.10.0	5	- 5	-5
- 2	-5	7.11.0	<2	1	1
-5	-5				
-6	-8	800	8	- 8	- 10
		810	3	0	-1
-19	-18	820	5	-4	-4
22	24	830	3	0	0
3	6	840	9	7	9
2	3	850	5	4	4

distances in the benzene ring are in much better agreement than this, and the average distance is the standard value of 1.39 A . The $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ bond also has the normal length of 1.55 A ., and the C (aromatic)-C (aliphatic) distance of 1.48 A . agrees well with those observed in

Fig. 3. Molecular dimensions.
other molecules, e.g. 1.50 A. in dibenzyl (Jeffrey, 1947). The $\mathrm{C}=0$ distance of 1.28 A . may be compared with $1.213 \pm 0.026 \mathrm{~A}$. found in the electron-diffraction study of formic acid (Schomaker \& O'Gorman, 1947) and ${ }^{\circ}$ $1.33 \pm 0.03 \mathrm{~A}$. in pentaerythritol tetracetate (Goodwin

Table 4. Comparison of observed and calculated $F(h k l)$'s
(Hydrogen contributions omitted)

Plane	$F_{\text {obs }}$ 7	$F_{\text {calo. }}$ -7	Plane	F obs <2	$F_{\text {calc. }}{ }_{\text {l }}$	Plane 1.14,ī	$F_{\text {obs }}{ }_{7}$	$F_{\text {calc. }}{ }_{5}$	Plane 6.10.ī		$F_{\text {culc }}$ -5
021	56	67	451	6	3	1.15. $\overline{\mathrm{I}}$	<2	-1	6.11.1	<2	5
031	74	83	461	8	-8	1.16.İ	<2	0	6.12.I	8	-7
041	22	25	471	8	-6	1.17,İ	<2	-1			
051	3	0	481	7	-4	1,18, 1	<2	- 1	701 İ	11	-11
061	10	-7	491	3	-1				711	10	- 4
071	8	-8	4.10.1	<2	3	2117	5	-3	721	<2	2
081	10	-8	4.11.1	5	4	221.	20	22	7311	7	9
091	<2	-1	4,12.1	<2	-1	23 I	12	12	741	13	12
0.10.1	4	0				$241 \overline{1}$	12	-14	-7511	12	8
0.11.1	3	- 1	501	12	-16	251	24	-21	761	7	3
0.12.1	3	-1	511	16	-14	261	14	-14	771 İ	<2	-4
0.13 .1	11	10	521	7	-6	2711	14	-14	781	<2	- 2
0.14,1	8	$-.5$	531	15	-14	281	3	-3	791	<2	1
0.15.1	3	1	541	7	11	291	6	1	7.10.1	<2	1
0.16 .1	<2	-1	551	<2	-1	2.10.1	14	13	7.11.1]	<2	- 2
0.17 .1 ।	<2	0	561	<2	2	2.11.1]	2	2			
0.18.1	3	2	571	<2	2	2.12.İ	11	6	811	<2	1
			581	<2	-1	2.13.I	<2	0	821 ¹	11	8
101	60	86	591	<2	1	2.14,1]	3	-3	831	3	0
111	40	44	5.10.1	7	5	2.15.I	3	-3	841 İ	7	5
121	24	27	5.11.1	5	-4	2.16.1	3	3	851	<2	- 3
131	23	20	5.12.1	<2	0				.861]	<2	- 2
141	28	-35				301	3	1	87 1̄	<2	2
151	6	9	611	10	-. 2	311	16	15	881	<2	1
161	9	-3	621	<2	3	321	12	-16	8911	<2	3
171	14	14	631	<2	-3	331	23	-23	8.10.1	<2	0
181	14	13	641	4	-1	341	22	-18			
191	11	-9	651	16	11	351	11	-7	002	18	21
1.10.1	<2	-1	661	13	-13	361	8	-6	012	14	-15
1.11.1	<2	0	671	8	7	37 I	22	20	. 022	8	-12
1.12.1	<2	-1	681	<2	1	381	<2	-2	032	7	3
1.13.1	<2	-1	691	<2	0	39I	7	-7	042	14	10
1.14.1	<2	0	6.10.1	<2	6	3.10.I	3	-4	052	18	21
1.15.1	<2	- -2	6.11 .1	<2	2	3.11.1	<2	- 1	062	20	24
1,16.1	4	3	6.12.1	<2	0	3.12.1]	3	-4	072	10	8
1.17.1	7	3				3.13.I	<2	1	082	6	- 2
1,18.1	3	3	701	<2	- 3	3.14.1	<2	1	092	6	-3
			711	3	-5				0,10.2	5	5
211	<2	0	721	<2	2	411	10	-5	0.112	12	-11
221	6	6	731	3	1	421	20	18	0.12.2	7	3
231	5	6	741	<2	1	431	20	-23	0,13,2	<2	-3
241	4	0	751	3	- 2	441	5	5	0,14,2	<2	0
251	7	-7	761	3	0	451	14	10			
261	23	14	771	10	-7	46 I	6	-6	112	16	-18
271	11	-7	781	<2	8	47 I	6	-2	122	16	18
281	6	3	791	<2	4	48 I	10	-6	132	21	23
291	8	-3	7.10 .1	$\dot{<}$	4	49 I	10	-6	142	27	30
2,10.1	7	-1	7,11.1	6	3	4.10 .1	<2	2	152	18	18
2,11,1	7	-5				4.11 .1	<2	1	162	7	-9
2.12.1	<2	-3	811	<2	0	4,12,1]	<2	-1	172	$\cdot 4$	-4
2.13.1	<2	0	821	<2	- 4				182	5	-3
2,14,1	<2	- 3	. 831	<2	- 2	501 I	10	8	192	4	1
2.15.1	<2	2	841	<2	-4	511	<2	-3	1.10,2	5	4
2.16.1	9	6	851	<2	-4	521	6	- 3	1.11,2	6	4
			861	<2	2	53 Ī	10	4	1.12,2	7	-4
301	6	-3	871	<2	7	541	10	-4	1.13,2	<2	2
311	15	14	881	<2	4	551	10	11	1.14,2	<2	0
321	17	-18	891	5	4	561	<2	-2			
331	6	-7	8.10.1	<2	-1	571	5	2	202	11	9
341	<2	-5				581	8	4	212	7	2
351	<2	5	1011	7	- 5	591	11	-9	222	<2	-1
361	<2	1	111	17	18	5.10.1]	11	8	232	20	15
371	11	12	$12 \overline{1}$	23	23	5.11,1]	5	-5	242	14	-12
381	14	-10	13 I	15	-14	5.12.1	<2	-3	252	8	7
391	14	-15	141 İ	12	12				262	<2	-1
3.10 .1	7.	-5	$15 \overline{1}$	18	-22	611 İ	8	9	272	5	0
3.11.1	<2	0	16 I	2	6	621 İ	<2	- 2	282	6	4
3.12 .1	8	- 5	171 İ	<2	-1	$63 \overline{1}$	7	-5	292	5	3
3.13.1	9	8	181	8	- 4	$64 \overline{1}$	8	7	2,10,2	<2	1
3.14,1	<2	0	191	4	-2	$65 \overline{1}$	8	10	2,11,2	<2	- 3
			1,10.İ	14	-11	661	7	. 5	2.12.2	<2	-1
411	4	2	1.11, $\overline{1}$	14	11	671 İ	2	4			
421	<2	- 2	1.12.İ	12	7	681	<2	4	312	11	-8
431	22	-22	1.13.1̄	12	9	691	5	,	322	8	- 3

Table 4 (contd.)

Plane	$F_{\text {obs. }}$	$F_{\text {calc }}$.	Plane	$F_{\text {obs }}$.	$F_{\text {calc }}$.	Plane	$F_{\text {obs }}$.	$F_{\text {calc }}$.	Plane	$F_{\text {obs }}$	$F_{\text {calc }}$.
332	<2	0	712	<2	2	215	16	-16	432	7	2
342	10	8	722	<2	2	$22 \overline{2}$	16	-16	442	12	-8
352	11	-8	732	5	0	$23 \overline{2}$	17	-15	452	8	7
362	<2	-5	742	11	-8	$24 \overline{2}$	17	-15			
372	<2	1	752	8	7	252	<2	- 2	512	3	2
382	<2	4				262	8	6	$52 \overline{2}$	<2	1
392	5	-2	802	<2	2	$27 \overline{2}$	11	8	$53 \overline{2}$	6	5
3.10.2	6	6	812	<2	0	$28 \overline{2}$	4	3	542	4	3
3.11.2	7	-5	822	<2	0	292	6	. 5	552	4	-1
3,12,2	8	- 6	832	<2	0	2.10,2	<2	0			
			842	<2	1	2.11,2	3	-3	602	7	-8
402	17	-15	852	<2	-3	2,12,2	5	-4	612	<2	5
412	5	2					5		$62 \overline{2}$	6	10
422	<2	2	112	11	5	312	15	-14	632	5	6
432	4	- 4	$12 \overline{2}$	3	-4	$32 \overline{2}$	9	- 7	642	10	9
442	<2	-3	132	11	-2	332	8	-5	$65 \overline{2}$	6	4
452	5	-2	$14 \overline{2}$	6	-4	342	17	15			
			152	2	3	352	2	0	712	8	10
512	6	7	162	17	-16	362	7	-12	722	13	12
522	<2	-1	172	<2	-1	372	7	- 4	732	4	-1
532	6	-5	182	<2	1	382	5	-2	$74 \overline{2}$	<2	-1
542	8	- 7	192	13	11	392	6	-6	$75 \overline{2}$	<2	- 3
552	6	-6	1.10,2	13	12	3.10,2	5	- 6			
			1.11.2	6	6	3.11.2	<2	-1	802	<2	4
602	<2		1.12.2	6	4	3.12.2	<2	-3	812	<2	-1
612	7	-4	1.13.2	<2	-4				822	<2	1
622	5	5	1.14,2	<2	0	402	6	-7	$83 \overline{2}$	<2	-1
632	12	-12				412	7	-7	842	<2	0
642	6 <2	7 $-\quad 2$	205	13	15	422	5	5	852	${ }_{6}$	4

To economize in space the $(h k 3),(h k 4)$, and $(h k 5)$ structure amplitudes are not recorded. The factor $\Sigma\left(\left|F_{\text {obs. }}\right|-\left|F_{\text {calc. }}\right|\right) \div \Sigma\left|F_{\text {obs. }}\right|$ is 0.27 for these planes.

Fig. 4. Arrangement of the molecules in the unit cell.
\& Hardy, 1938). Of the C-O distances which have been recorded the majority are within the range $1 \cdot 43 \pm 0 \cdot 03 \mathrm{~A}$. The distance of 1.51 A . found in diethyl terephthalate is considerably longer than this, being equal to the sum of the carbon radius as in diamond and the oxygen radius as in hydrogen peroxide, with no correction for electro-
negativity difference. The other $\mathrm{C}-\mathrm{O}$ distance is 1.32 A ., but since the accuracy of the bond lengths is not particularly high, it is not profitable to discuss the difference in the two $\mathrm{C}-\mathrm{O}$ measurements until the structures of further compounds of this type have been studied.

The orientation of the molecule in the unit cell is

Fig. 5. Diagrammatic projection of the structure on (010).
where X_{m}, Y_{m}, Z_{m} are three orthogonal axes of the molecule defined by the plane and perpendicular of the benzene ring (Fig. 3). The arrangement is illustrated in Fig. 4. The reason for the (101) cleavage, the large (101) structure amplitude, and the direction of very high refractive index in this plane is shown more clearly in Fig. 5, by the diagrammatic projection of the structure on (010).

The shortest intermolecular contacts are between the
CH_{2} and CH_{3} groups of one molecule (e.g. with centre at $0,0,0$) and the ketonic oxygen atoms of the two adjacent space-group-related molecules (centres at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ and $\frac{1}{2}, \frac{1}{2}$, $\frac{\overline{2}}{2}$). These distances are 3.47 and 3.48 A . for $\mathrm{C}_{5}-\mathrm{O}_{2}$ and $3 \cdot 41$ and $3 \cdot 49 \mathrm{~A}$. for $\mathrm{C}_{6}-\mathrm{O}_{2}$. Other significant intermolecular distances are 3.77 and 3.71 A . respectively between the C_{6} atom of one molecule (centre, say, $0,0,0$), and the C_{1} and C_{2} atoms of the adjacent molecule (centre 1, 0, 0) and $3.97,4.00$ and 4.25 A . respectively between the same C_{6} atom and atoms $\mathrm{C}_{1}, \mathrm{O}_{1}$ and C_{6} of the adjacent molecule (centre $1,0, \overline{\mathrm{l}}$). Since the perpendicular distance between parallel molecules with centres along the c axis is $3 \cdot 60 \mathrm{~A}$., there can be no distances shorter than this between these molecules. Hence there are only van der Waals forces between molecules.

The structure is one of layers of molecules at intervals' of $\frac{1}{2} b$, with the ketonic oxygen to ethyl group contacts between the layers. This accounts for the observed twinning, since, although the relative tilts of molecules in adjacent layers are different in a twinned crystal, these interlayer contacts are still the same.

In conclusion, I wish to thank Dr A. F. Wells and Dr C. J. Brown for their advice throughout the work.

References

Goodwin, T. H. \& Hardy, R. (1938). Proc. Roy. Soc. A, 164, 369.
Jeffrey, G. A. (1947). Proc. Roy. Soc. A, 188, 222.
Robertson, J. M. (1943). J. Sci. Instrum. 20, 169.
Schomaker, V. \& O'Gorman, J. M. (1947). J. Amer. Chem. Soc. 69, 2638.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1949). 2, 126
The structures of uranium metal.* By A. S. Wilson and R. E. Rundle. Institute for Atomic Research, Iowa State College, Ames, Iowa, U.S.A.
(Received 3 November 1948)

Heat-capacity studies first revealed that uranium metal exists in three modifications. X-ray examination has established that the alpha phase, stable to $640^{\circ} \mathrm{C}$., is the orthorhombic form with the structure reported by Jacobs \& Warren (1937). The beta phase, stable between 640 and $760^{\circ} \mathrm{C}$., is also a phase of low symmetry, but its structure has not yet been determined. Gamma-uranium, stable from $760^{\circ} \mathrm{C}$. to the melting-point, is body-centered cubic, the structure reported for uranium at room temperature by McLennan \& McKay (1930).

[^0]X-ray diagrams of beta- and gamma-uranium at high temperatures, and also at room temperature, have been obtained. The latter can best be obtained by quenching uranium samples containing chromium or molybdenum in solid solution. In our experience, it is impossible to quench pure beta- or gamma-uranium to room temperature.

Since uranium at high temperature is a good 'getter', elaborate precautions are necessary to obtain satisfactory X-ray data for the beta- and gamma-ranges. We have accomplished this by sealing uranium wire in evacuated quartz capillaries. Uranium reacts with quartz, so it was necessary to use columbium spacers between quartz and uranium; the vacuum in the quartz capillary was im-

[^0]: * Paper no. 49 of Institute for Atomic Research of the Iowa State College. Work done under Contract W-7405 eng. 82. This paper is based on Manhattan Project Reports, CT-1775, CT-1947 and CT-1985 (1944).

